Lists of structure factors, anisotropic displacement parameters, least-squares-planes data, H -atom coordinates and complete geometry have been deposited with the IUCr (Reference: MUl192). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England

References

Bereman, R. D. \& Lu, H. (1993). Inorg. Chim. Acta, 204, 53-61.
Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures - An Automatical Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Cassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. \& Underhill, A. E. (1991). Coord. Chem. Rev. 110, 115-160.
Cornelissen, J. P., Creyghton, E. J., de Graaff, R. A. G., Haasnoot, J. G. \& Reedijk, J. (1991). Inorg Chim. Acta, 185, 97-102.

Cromer, D. T. \& Waber, J. T. (1974). International Tables for Xray Crystallography, Vol. IV, Tables 2.2A and 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Gilmore, C. J. (1983). MITHRIL. Computer Program for the Automatic Solution of Crystal Structure from X-ray Data. Department of Chemistry, University of Glasgow, Scotland.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA
Molecular Structure Corporation (1986). CONTROL. An Automatic Package for Rigaku AFC Single-Crystal Diffractometers. Revised 1988. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Vance, C. T., Bereman, R. D., Bordner, J., Hatfield, W. E. \& Helms, J. H. (1985). Inorg. Chem. 24, 2905-2910.

Welch, J. H., Bereman, R. D. \& Singh, P. (1989). Inorg. Chim. Acta, 162, 89-96.
Yao, T.-M., You, X.-Z. \& Yang, Q.-C. (1994). Chin. J. Chem. 12, 248-257.
Zuo, J.-L., Yao, T.-M., Xu, X.-X., You, X.-Z. \& Huang, X.-Y. (1995). Polyhedron, 14, 483.

Acta Cryst. (1996). C52, 48-50

Cyanobis(1,10-phenanthroline)copper(II) Tricyanomethanide Dihydrate

Ivan Potočňák, ${ }^{a}$ Michal Dunaj-Jurčo, ${ }^{a}$ Dušan MiKlos̃a and Lothar JäGer ${ }^{b}$
${ }^{a}$ Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia, and ${ }^{b}$ Fachbereich Chemie, Martin-Luther-University, HalleWittenberg, Weinbergweg 16, 06120 Halle/Saale, Germany

(Received 12 April 1995; accepted 26 June 1995)

Abstract

The crystal structure of the title complex, $[\mathrm{Cu}(\mathrm{CN})$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left[\mathrm{C}(\mathrm{CN})_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is formed by discrete $\left[\mathrm{Cu}(\text { phen })_{2}(\mathrm{CN})\right]^{+}$cations, tcm anions and uncoordi-

Fig. 1. ORTEP (Johnson, 1965) drawing of the formula unit and labelling of atoms. Displacement ellipsoids are plotted at the 40% probability level.
$\mathrm{C} 10=1.970(5) \AA \mathrm{A}$ is significantly shorter than the other two. The out-of-plane angles lie within the range 79.9$95.1^{\circ}$. The bond angles in the equatorial plane differ considerably from the ideal trigonal angle of 120°, with two large angles of $131.86(14)\left(\alpha_{1}=\mathrm{C} 10-\mathrm{Cu}-\mathrm{N} 41\right)$ and $124.80(14)^{\circ}\left(\alpha_{2}=\mathrm{C} 10-\mathrm{Cu}-\mathrm{N} 11\right)$ and one small angle of $103.34(11)^{\circ}\left(\alpha_{3}=\mathrm{N} 11-\mathrm{Cu}-\mathrm{N} 41\right)$. Thus, the $\mathrm{Cu}-\mathrm{C} 10$ bond is shortened relative to that of a regular trigonal-bipyramidal $\mathrm{CuN}_{4} \mathrm{C}$ chromophore. The angle α_{3}, which is opposite the $\mathrm{Cu}-\mathrm{C} 10$ bond, is narrower than the ideal angle of 120° by 16.66°, and there is a difference of 7.06° between α_{1} and α_{2}. Thus, the coordination polyhedron around the Cu atom can be best described as trigonal bipyramidal with near $C_{2 v}$ symmetry (Harrison \& Hathaway, 1980). The sum of the bond angles in the equatorial plane (360.00°) indicates coplanarity of the Cu atom with the three equatorial atoms (the deviation of the Cu atom from the $\mathrm{C} 10-$ N 11 - N 41 plane is $0.003 \AA$).
The N atoms of the two phen molecules are coordinated both in equatorial and in axial positions, probably as a result of steric effects. The bond distances and angles in the phen molecules are normal and range from 1.328 to $1.431 \AA$ and 116.1 to 124.6°, respectively. Both phen molecules are almost planar (the largest deviation of an atom from the mean planes through the phen molecules is less than $0.029 \AA$). The mean planes of the two phen molecules are inclined at $101.6(5)^{\circ}$.

The cyanide group is linearly bound to the Cu atom through the C atom $\left[\mathrm{Cu}-\mathrm{C} 10-\mathrm{N} 10=177.6(4)^{\circ}\right]$ with a $\mathrm{C} 10-\mathrm{N} 10$ bond length of 1.122 (5) \AA.

The almost planar tcm anion (the largest deviation of atoms from the mean plane is less than $0.043 \AA$) is uncoordinated, probably due to steric repulsion, and serves as a counterion to the $\left[\mathrm{Cu}(\mathrm{phen})_{2}(\mathrm{CN})\right]^{+}$ cation. According to Golub, Köhler \& Skopenko (1986), the mode of bonding in this anion can be described as largely delocalized π-bonding and $\mathrm{C}-\mathrm{C}$ lengths of ~ 1.394 and $\mathrm{C}-\mathrm{N}$ lengths of $\sim 1.177 \AA$ should be expected. On the contrary to this assumption, all of the lengths of the $\mathrm{C} 4-\mathrm{C}, \mathrm{C} 4-\mathrm{C} 2$ and $\mathrm{C} 4-$ C3 bonds [1.452 (7), 1.405 (8) and 1.463 (9) \AA, respectively] are longer, and $\mathrm{C} 1-\mathrm{N} 1$ and $\mathrm{C} 2-\mathrm{N} 2$ [1.098 (6) and 1.072 (6) \AA, respectively] are shorter than the expected values. The longer $\mathrm{C} 3-\mathrm{N} 3$ bond length [1.188 (8) \AA] is due to the $\mathrm{N} 3 \cdots \mathrm{O} 2$ hydrogen bond [2.860 (7) \AA]. These results indicate localized $\mathrm{C}-\mathrm{C}$ single bonds and localized $\mathrm{C} \equiv \mathrm{N}$ triple bonds. The angles around the central C4 atom range from 118.8 to 120.9° and the $\mathrm{C} 4-\mathrm{C} 1-\mathrm{N} 1, \mathrm{C} 4-\mathrm{C} 2-\mathrm{N} 2$ and $\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 3$ angles range from 172.9 to 176.1°, indicating the $s p^{2}$ and $s p$ hybridization of the appropriate C atoms.

The two water molecules are uncoordinated. The first $\mathrm{H}_{2} \mathrm{O}(\mathrm{O} 1)$ molecule forms one hydrogen bond to the $\mathrm{H}_{2} \mathrm{O}(\mathrm{O} 2)$ molecule and the second $\mathrm{H}_{2} \mathrm{O}(\mathrm{O} 2)$ molecule forms three hydrogen bonds: $\mathrm{O} 2 \cdots \mathrm{O}=2.735$ (9), $\mathrm{O} 2 \cdots \mathrm{~N} 3=2.860(7)$ and $\mathrm{O} 2 \cdots \mathrm{~N} 10=2.903$ (9) \AA. The latter two hydrogen bonds cause the prolongation of the multiple bonds C3-N3 [1.188(8) A] and C10-N10 [1.222 (5) Å].

Experimental

Crystals were prepared by mixing 10 ml of a 0.1 M water solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ with 20 ml of a 0.1 M ethanol solution of phen. A mixture of 10 ml of a 0.1 M ethanol solution of $\mathrm{KC}(\mathrm{CN})_{3}$ and 10 ml of a 0.1 M water solution of KCN was added. Dark green prismatic crystals of (I) appeared the next day. The density D_{m} was measured by flotation in benzenebromoform.

Crystal data

$\left[\mathrm{Cu}(\mathrm{CN})\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]-$
$\left[\mathrm{C}(\mathrm{CN})_{3}\right] .2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=576.07$
Triclinic
Pī
$a=10.262(3) \AA$
$b=10.595$ (3) \AA
$c=11.950(4) \AA$
$\alpha=88.36(2)^{\circ}$
$\beta=84.28(2)^{\circ}$
$\gamma=83.07(2)^{\circ}$
$V=1283.2(7) \AA^{3}$
$Z=2$
$D_{x}=1.491 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.47 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=4.85-11.87^{\circ}$
$\mu=0.896 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.45 \times 0.45 \times 0.25 \mathrm{~mm}$
Dark green

Data collection

Syntex $P 2_{1}$ diffractometer $\theta-2 \theta$ scans
Absorption correction:
ψ scan (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.756, T_{\text {max }}=$ 0.966

4530 measured reflections 4530 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0438$
$w R\left(F^{2}\right)=0.1084$
$S=1.094$
4525 reflections
425 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0627 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.001$
$\Delta \rho_{\text {max }}=0.706 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.245$ e \AA^{-3}
Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cu	0.18422 (5)	0.46747 (4)	0.23407 (4)	0.0521 (2)
N11	0.3358 (3)	0.3275 (3)	0.1699 (2)	0.0529 (8)
N21	0.3345 (3)	0.5725 (3)	0.2083 (2)	0.0496 (7)
N31	0.0561 (3)	0.3413 (3)	0.2739 (3)	0.0517 (8)
N41	0.1953 (3)	0.4537 (3)	0.4083 (2)	0.0446 (7)
C 10	0.0670 (4)	0.5777 (4)	0.1417 (3)	0.0534 (10)
N10	-0.0008 (4)	0.6432 (4)	0.0921 (3)	0.0735 (10)
C11	0.4513 (4)	0.3764 (4)	0.1465 (3)	0.0489 (9)
C12	0.3353 (5)	0.2050 (4)	0.1498 (4)	0.0688 (12)
C13	0.4467 (6)	0.1284 (5)	0.1094 (4)	0.0813 (14)
C14	0.5619 (6)	0.1770 (5)	0.0851 (4)	0.0805 (15)
C15	0.5675 (4)	0.3064 (4)	0.1036 (3)	0.0587 (11)
C16	0.6825 (4)	0.3681 (6)	0.0772 (4)	0.0691 (13)
C21	0.4503 (4)	0.5089 (4)	0.1670 (3)	0.0483 (9)
C22	0.3305 (5)	0.6959 (4)	0.2298 (3)	0.0632 (11)
C23	0.4432 (5)	0.7581 (5)	0.2105 (4)	0.0690 (12)
C24	0.5566 (5)	0.6957 (5)	0.1683 (4)	0.0676 (13)
C25	0.5655 (4)	0.5659 (4)	0.1433 (3)	0.0561 (10)
C26	0.6822 (4)	0.4921 (5)	0.0965 (3)	0.0667 (12)
C31	0.0445 (3)	0.3065 (3)	0.3831 (3)	0.0464 (9)
C32	-0.0106 (4)	0.2854 (4)	0.2032 (4)	0.0650 (11)
C33	-0.0892 (5)	0.1916 (4)	0.2391 (5)	0.0756 (14)
C34	-0.1024 (4)	0.1578 (4)	0.3500 (4)	0.0675 (12)
C35	-0.0343 (3)	0.2144 (3)	0.4269 (3)	0.0524 (10)
C36	-0.0391 (4)	0.1834 (4)	0.5435 (4)	0.0601 (11)
C41	0.1189 (3)	0.3674 (3)	0.4562 (3)	0.0431 (8)
C42	0.2644 (4)	0.5105 (4)	0.4755 (3)	0.0535 (10)
C43	0.2612 (4)	0.4868 (4)	0.5896 (3)	0.0589 (11)
C44	0.1846 (4)	0.4000 (4)	0.6375 (3)	0.0574 (10)
C45	0.1103 (4)	0.3357 (3)	0.5709 (3)	0.0498 (9)
C46	0.0297 (4)	0.2410 (4)	0.6117 (4)	0.0578 (11)
C1	0.4779 (6)	1.2064 (5)	0.4605 (6)	0.107 (2)
NI	0.5459 (5)	1.2777 (6)	0.4381 (6)	0.150 (2)
C2	0.3218 (6)	1.0621 (5)	0.4129 (5)	0.085 (2)
N2	0.2682 (5)	1.0163 (5)	0.3565 (4)	0.1013 (15)
C3	0.3449 (5)	1.0973 (5)	0.6153 (7)	0.099 (2)
N3	0.3164 (5)	1.0688 (5)	0.7106 (5)	0.109 (2)
C4	0.3775 (5)	1.1241 (5)	0.4956 (6)	0.093 (2)
Ol	0.1553 (7)	0.9350 (6)	1.0920 (7)	0.245 (4)
O 2	0.1590 (5)	1.1114 (4)	0.9204 (4)	0.160 (2)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Cu}-\mathrm{Cl} 0$	$1.970(5)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.098(6)$
$\mathrm{Cu}-\mathrm{N} 31$	$2.001(3)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.452(7)$
$\mathrm{Cu}-\mathrm{N} 21$	$2.003(3)$	$\mathrm{C} 2-\mathrm{N} 2$	$1.072(6)$
$\mathrm{Cu}-\mathrm{N} 41$	$2.096(3)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.405(8)$
$\mathrm{Cu}-\mathrm{N} 11$	$2.116(3)$	$\mathrm{C} 3-\mathrm{N} 3$	$1.188(8)$
$\mathrm{C} 10-\mathrm{N} 10$	$1.122(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.463(9)$
$\mathrm{C} 10-\mathrm{Cu}-\mathrm{N} 31$	$95.10(14)$	$\mathrm{N} 41-\mathrm{Cu}-\mathrm{N} 11$	$103.34(11)$
$\mathrm{C} 10-\mathrm{Cu}-\mathrm{N} 21$	$94.93(14)$	$\mathrm{N} 10-\mathrm{C} 10-\mathrm{Cu}$	$177.6(4)$
$\mathrm{N} 31-\mathrm{Cu}-\mathrm{N} 21$	$169.92(12)$	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 4$	$173.4(7)$
$\mathrm{C} 10-\mathrm{Cu}-\mathrm{N} 41$	$131.86(14)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 4$	$172.9(7)$
$\mathrm{N} 31-\mathrm{Cu}-\mathrm{N} 41$	$80.49(12)$	$\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 4$	$176.1(6)$
$\mathrm{N} 21-\mathrm{Cu}-\mathrm{N} 41$	$93.50(11)$	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 1$	$118.8(6)$
$\mathrm{C} 10-\mathrm{Cu}-\mathrm{N} 11$	$124.80(14)$	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 3$	$120.9(5)$
$\mathrm{N} 31-\mathrm{Cu}-\mathrm{N} 11$	$93.52(12)$	$\mathrm{Cl}-\mathrm{C} 4-\mathrm{C} 3$	$120.1(6)$
$\mathrm{N} 21-\mathrm{Cu}-\mathrm{N} 11$	$79.92(12)$		

Anisotropic displacement parameters were refined for all nonH atoms. All phen H atoms were located from the difference Fourier map and refined with free isotropic temperature factors. Water H atoms were not found.

Data collection and cell refinement were carried out using Syntex $P 2_{1}$ software. Intensities were corrected for Lorentz and polarization factors using XP21 (Pavelčík, 1993). The structure was solved by the heavy-atom method with XFPS (Pavelčík, Rizzoli \& Andreetti, 1990) and subsequent Fourier syntheses using SHELXL93 (Sheldrick, 1993). Geometrical analysis was performed using PARST (Nardelli, 1983) and SHELXL93. ORTEP (Johnson, 1965) was employed to draw the structure.

This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Ministry of Education, Slovak Republic (grant No. 1/1412/94).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KAl132). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Anderson, O. P. (1975). Inorg. Chem. 14, 730-734.
Dunaj-Jurčo, M., Potočňák, I., Cíbik, J., Kabešová, M., Kettmann, V. \& Mikloš, D. (1993). Acta Cryst. C49, 1479-1482.
Golub, A. M., Köhler, H. \& Skopenko, V. V. (1986). Chemistry of Pseudohalogenides. Amsterdam: Elsevier.
Harrison, W. D. \& Hathaway, B. J. (1980). Acta Cryst. B36, 10691074.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pavelčík, F. (1993). Program XP21. Comenius University, Pharmaceutical Faculty, Bratislava, Slovakia.
Pavelčík, F., Rizzoli, C. \& Andreetti, G. D. (1990). XFPS. A Program for Automatic Structure Determination by Fourier, Patterson and Superposition Methods. MS-DOS PC version, November 1990. Comenius University, Bratislava, Slovakia, and University of Parma, Italy.
Potočňák, I., Dunaj-Jurčo, M., Mikloš, D. \& Jäger, L. (1996). Acta Cryst. C52. In the press.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

